Reduced Order Models for Decision Analysis and Upscaling of Aquifer Heterogeneity

Velimir V. Vesselinov, Daniel O'Malley Boian S. Alexandrov, Bryan Moore Los Alamos National Laboratory, NM 87545, USA

LA-UR-16-29305

Blind source separation

- Blind source separation applied to hydrogeochemistry (Contaminant source identification)
- Reduced order modeling for contaminant transport (Upscaling of contaminant transport properties)

Blind Source Separation (BSS)

 BSS: an objective machine-learning method for source identification without a model (model-free analysis/inversion)

- Provides characterization of the physical sources causing spatial and temporal variation of observed state variables (e.g. pressures, concentrations, etc.)
- Avoids model errors
- Accounts for measurement errors
- Identification of the sources (forcings) can be crucial for conceptualization and model development
- If the sources are successfully "unmixed" from the observations, decoupled physics models may then be applied to analyze the propagation of each source independently
- Widely applicable

Blind Source Separation \rightarrow Matrix Factorization

► Invert for the unknown sources S [p × r] that have produced known observation records, H [p × m], with unknown noise (measurement errors), E [p × m]:

$\mathbf{H}=\mathbf{S}\mathbf{A}+\mathbf{E}$

- A $[r \times m]$ is unknown "mixing" matrix
- p is the number of observation points (wells)
- *m* is the number of observed components
- r is the number of **unknown** sources (r < m)
- The problem is ill-posed and the solutions are non-unique
- There are various methods to resolve this applying different "regularization" terms:
 - maximum variability
 - statistical independence
 - non-negativity
 - smoothness
 - simplicity, etc.

Blind source separation methods

- ► ICA: Independent Component Analysis
 - Maximizing the statistical independence of the retrieved forcings signals in S (i.e. the matrix columns are expected to be independent) by maximizing some high-order statistics for each source signal (e.g. kurtosis) or minimizing information entropy
 - The main idea behind ICA is that, while the probability distribution of a linear mixture of sources in H is expected to be close to a Gaussian (the Central Limit Theorem), the probability distribution of the original independent sources is expected to be non-Gaussian.
- ► NMF: Non-negative Matrix Factorization
 - Non-negativity constraint on the components of both the signal S and mixing A matrices
 - As a result, the observed data are representing only additive signals that cannot cancel mutually (suitable for many applications)
 - Additivity and non-negativity requirements may lead to sparseness in both the signal S and mixing A matrices

- NMFk: we have developed a novel machine learning method for BSS coupling two machine-learning techniques:
 - Non-negative Matrix Factorization (NMF)
 - k-means clustering
- NMFk applies two constraints:
 - non-negativity
 - parsimony (simplicity)
- Implemented in MADS (Model Analysis & Decision Support)
- Coded in julia

LANL Chromium site (2015)

Blind source separation	Neural Networks	Conclusions
0000000	0000	00

Hydrogeochemical data [29×6]

In the microphone analogy, this is what is recorded by the microphones.

Well	Cr^{6+}	ClO_4^-	SO_{4}^{2-}	NO_3^-	Cl^{-}	^{3}H
Pz-1	406.22	1.84	47.846	17.07	35.401	101.397
Pz-2a	83.89	0.88	71.155	14.42	66.436	121.013
Pz-2b	35.01	0.419	6.2918	4.24	7.582	2.061
Pz-3	338.88	1.21	33.967	23.60	21.853	24.184
Pz-4	5.69	63.7	5.8175	17.90	3.0975	11.346
Pz-5	89.26	0.44	8.7896	4.98	7.8321	11.807
R-1	5.68	0.351	2.19	2.26	2	0.5
R-11	20.8	0.83	13.1	20.60	5.15	4.9
R-13	3.81	0.4	3.12	3.22	2.49	0.2
R-15	12.5	8.93	6.22	7.97	3.99	29
R-28	407	1.0	55.1	4.91	38.5	211
R-33#1	4.89	0.398	3.32	2.41	2.29	2
R-33#2	5.52	0.35	2.3	1.64	2.0	1.2
R-34	4.26	0.333	2.66	2.76	2.42	1.2
R-35a	4.3	0.422	5.62	2.10	6.74	0.6
R-35b	6.98	0.579	3.48	4.84	2.88	1.3
R-36	5.29	1.55	7.35	8.69	6.1	16
R-42	835	1.24	80.9	27.04	45.2	201
R-43#1	146	1.02	16.9	21.27	8.59	1.3
R-43#2	8.13	0.751	5.87	8.52	4.66	1.1
R-44#1	15.6	0.435	3.56	4.85	2.42	3.2
R-44#2	7.72	0.358	2.95	4.00	2.37	0.8
R-45#1	35.7	0.597	7.37	9.76	4.77	3.6
R-45#2	18.4	0.4	4.32	3.04	3.72	3.3
R-50#1	103	0.586	11.5	6.85	8.13	26
R-50#2	3.73	0.307	2.25	2.79	2.0	1.2
R-61#1	10.0	0.195	1.77	9.84	1.84	24
R-61#2	1	0.198	2.2334	1.51	2.4858	1

In the microphone analogy, this is what was said by each person. Each person's speech corresponds to one row of this table.

Source	Cr^{6+}	ClO_4^-	SO_{4}^{2-}	NO_3^-	Cl^{-}	^{3}H
	$\mu g/L$	$\mu g/L$	mg/L	mg/L	mg/L	pCi/L
1	1300	0	87	8.8	66	11
2	0.21	0.56	11	0	0.021	130
3	0.25	51	2	13	0.094	0
4	0.24	0	19	4	33	0.069
5	0.009	0	7	21	0	0

Estimated mixtures at the wells [29×5]

In the microphone analogy, this is how loud each person's voice (column) is when recorded by each microphone (row).

Maps of groundwater types / sources

$$Cr^{6+}, SO_4^{2-}, Cl^{-}$$

 ClO_4^-, NO_3^-

 NO_3^-

Blind source separation

Neural Networks

Complex transport modeling

B	lind	l so	urc	ce	se	pa	ra	tio	n
0	00	000	20	00	2				

Neural Networks

Reduced-order transport modeling

Blind	source separation
0000	00000

Neural Networks

Neural network + analytical solutions

- ▶ We use analytical solutions from O'Malley & Vesselinov (AWR, 2014)
- These solutions are implemented in Anasol.jl, part of MADS
- A permeability field is fed into a neural network, and the neural network produces a small set of inputs to the analytical model

Blind source separation	Neural Networks	Conclusions
0000000	0000	00

Results

- NMFk applied to groundwater mixing
- Neural networks applied to groundwater transport

- Lu, Vesselinov, Lei: Identifying Aquifer Heterogeneities using the Level Set Method (poster, Wednesday, 8:00 - 12:00, H31F-1462)
- Zhang, Vesselinov: Bi-Level Decision Making for Supporting Energy and Water Nexus (West 3016: Wednesday, 09:15 - 09:30, H31J-06)
- Vesselinov, O'Malley: Model Analysis of Complex Systems Behavior using MADS (West 3024: Wednesday, 15:06 - 15:18, H33Q-08)
- Hansen, Vesselinov: Analysis of hydrologic time series reconstruction uncertainty due to inverse model inadequacy using Laguerre expansion method (West 3024: Wednesday, 16:30 -16:45, H34E-03)
- Lin, O'Malley, Vesselinov: Hydraulic Inverse Modeling with Modified Total-Variation Regularization with Relaxed Variable-Splitting (poster, Thursday, 8:00 - 12:00, H41B-1301)
- Pandey, Vesselinov, O'Malley, Karra, Hansen: Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis (poster, Thursday, 8:00 - 12:00, H41B-1307)
- Hansen, Haslauer, Cirpka, Vesselinov: Prediction of Breakthrough Curves for Conservative and Reactive Transport from the Structural Parameters of Highly Heterogeneous Media (West 3014, Thursday, 14:25 - 14:40, H43N-04)
- O'Malley, Vesselinov: Groundwater Remediation using Bayesian Information-Gap Decision Theory (West 3024, Thursday, 17:00 - 17:15, H44E-05)
- Dawson, Butler, Mattis, Westerink, Vesselinov, Estep: Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach (West 3024, Thursday, 17:30 - 17:45, H44E-07)